


Software VulnerabilitySoftware Vulnerability

• Refers to a weakness in a system allowing an
attacker to violate the integrity,
confidentiality, access control, availability,
consistency or audit mechanism of the
system or the data and applications it hosts
(Wikipedia)

• May exist only in theory or have a working
exploit



Potential vs. ExploitablePotential vs. Exploitable

• Potential vulnerabilities – locations within a
program that contain known weaknesses
– Ex. The usage of APIs known to be susceptible to

buffer overflows
– Potential vulnerabilities may or may not be

exploitable

• Exploitable vulnerabilities – exist when a
potentially vulnerable program location…
– Is dependent on or able to be influenced by user

supplied input
– Is reachable on the program control flow graph at

runtime



White Box AnalysisWhite Box Analysis
• Also known as “glass box testing” or

“structural testing”

• Involves detailed, manual, static analysis of
source or disassembly to gain understanding
of internal program structure

• Pros
– Human mind is good at pattern recognition and is

better at uncovering subtle bugs unlikely to be
located with automated tools

• Cons
– Time consuming (and thus costly)
– Sometimes difficult to tell weather a potential

vulnerability that is dependent upon external input
will be reachable at runtime



Black Box AnalysisBlack Box Analysis
• Also known as “concrete box testing” or

“functional testing”

• Does not rely on human understanding of
source or disassembly
– Involves injecting random or semi-random input into

a program and monitoring output for unexpected
behavior

• Pros
– Easily automated
– Vulnerabilities discovered at runtime are definitely

reachable and the input structure that caused them
is known

• Cons
– Random nature of input space exploration makes the

probability of discovering vulnerabilities highly non
deterministic



Black Box AnalysisBlack Box Analysis
(Fuzzers)(Fuzzers)

• Fuzzers - inject malformed input into a
program and then monitor it for crashes

• Many bugs are the result of programmer
oversights or assumptions regarding the
structure of user supplied input
– Often used to find bugs in parser / protocol

handling logic

• Examples:
– Spike: A collection of many fuzzers from Immunity
– File Fuzz: A file format fuzzer for PE (Windows)

binaries from iDefense.
– Peach Fuzz: Framework for building fuzzers written

by Michael Eddington



Fuzzers: The Good & BadFuzzers: The Good & Bad

• The Good
– Fully automated software attacks
– Random or pseudo random input selection results in

widely sampling the input space
– May generate test inputs that a human wouldn’t think

of

• The Bad
– Most fuzzers aren’t very intelligent

• We don’t learn anything from past inputs that can help
us select better test inputs in the future!

– No good measurement of attack progress
• The program either crashes or it doesn’t!

– Nondeterministic time frame for finding an
interesting bug

• The program has an equal liklihood of crashing 2
minutes from now or 2 weeks from now!



Smarter Fuzzers ???Smarter Fuzzers ???
• Goals

1. To have the fuzzer learn something from
past inputs that it can use to improve
input selection in the future

2. To improve the odds of finding something
interesting within a resonable time frame
• That is, we should use the knowledge we gain

from past experience to preferentially drive the
program toward states that have a greater
potential for vulnerability

3. To keep the attack automated as much as
possible



What to learn? (1)What to learn? (1)

• The runtime execution trace is dependent
upon both user-supplied input and the static
structural characteristics of the program
control flow graph.

• Normal fuzzers have no measurement of
how much or what portions of the program
and input state spaces have been explored
in the past

• If we had this information, maybe we could
use it to choose better inputs?



ConsiderConsider……
• Greater code coverage may correlate to

greater chance of discovering a vulnerable
program state

• By linking inputs with their runtime execution
paths, we may be able to select for inputs that
will have a greater liklihood of taking specific,
dependent execution paths that lead to
potentially vulnerable states

• Example: Paths to basic blocks indicating
usage of API’s known to be succeptible to
buffer overflows or format string
vulnerabilities



An Input Crafting ProblemAn Input Crafting Problem

• What does the input have to look like for us to
exercise the code path between input node
(recv) & the potentially vulnerable node
(strcpy) ???

recv

strcpy

Parsing &
validation
logic on path
between
recv and
strcpy



How?How?

• We can disassemble the program and
manually decode the packet parsing logic
(white box)

• We can throw random inputs at it hoping one
will eventually get the strcpy we think might
be vulnerable (black box).

• Or we can try to do a little better…



A Search Problem?A Search Problem?
• What if we could automatically decode the

packet parsing logic? Or at least evolve an
approximation heuristically?

• Can we model input crafting as a generalized
search problem?
– That is, aren’t we in some sense searching for those

inputs that conform to a structure capable of taking
specific, dependent execution paths that lead to
portions of a program with a higher than average
liklihood of vulnerability?

• We can perform this search by driving input
selection using a genetic algorithm where the
relative “fitness” or “goodness” of a specific
input is related to its progress on the program
control flow graph.



The Basic IdeaThe Basic Idea……

• Over time, some inputs will be better than
others:
– They increase code coverage by reaching previously

unexplored areas of the CFG
– They are on a path to a basic block where some

potentially vulnerable API is being used

• If we “mate” the best of the inputs we’ve
found in the past…
– We can select for those characteristics in the future

that maximize code coverage and drive inputs down
execution paths with potential vulnerabilities.



First a little theoryFirst a little theory……



Genetic AlgorithmsGenetic Algorithms
• A type of algorithm that mimics evolution

• What is an algorithm?
– Specific set of steps to find a solution to a specific

type of problem

• What is evolution?
– Natural process which acts on a population of

organisms
– Hereditary information is passed from one

generation to the next in the organism’s genome
– Mutation adds random variation to the genome
– Natural selection removes organisms whose

genetic code is less fit for their environment
– With each passing generation, the organisms in the

population are better suited to their environment



Genetic AlgorithmsGenetic Algorithms

• Genetic algorithms are stochastic
global optimizers
– Random component of the algorithm, so it

won’t run the same way twice
– Finds better solutions, but may not find

the best, even if you run it forever

• Example: Maximizing the number of
ones in a binary string of length 10



Genetic AlgorithmsGenetic Algorithms

• Requires three things
– A representation

• What solutions to the problem look like (its
genome)

– A fitness function
• An equation that operates on a solution and

tells you how good or bad it is

– Genetic operators
• Mutation and crossover

• Example:
– Representation: 10 digit binary string
– Fitness function: the number of ones



Genetic AlgorithmsGenetic Algorithms

• It works like this:
1. Start out with a population of random

solutions
2. Calculate each solution’s fitness
3. Select solutions with highest fitness
4. Slightly mutate the selected solutions

and then perform crossover (mating)
5. Create the next generation from

offspring and then go to step 2.



Step 1: Initial PopulationStep 1: Initial Population

• Start out with a population of random
solution genomes in the chosen
representation

• Example: Create 4 random binary strings

0100100000
1000001010
1110100111
0000001000

Population



Step 2: Calculate FitnessStep 2: Calculate Fitness

• Calculate the fitness function for each
member of the population’s genome

• Example: Count the number of ones in each
string

0100100000
1000001010
1110100111
0000001000

Population

2
3
7
1

Fitness



Step 3: SelectionStep 3: Selection

• Find out which solutions are fittest and ignore
the rest

• Example: The genomes having fitness 3 and 7
are the fittest

0100100000
1000001010
1110100111
0000001000

Population

2
3
7
1

Fitness



Step 4a: CrossoverStep 4a: Crossover

• Create new genomes by randomly swapping
their genomes at a random point

• Example: Use the two genomes we selected in
the previous slide and swap at location 3

Offspring

1000100111

Parent 1

1000001010

Parent 2

1110100111

100

111

0001010

0100111

1110100111



Step 4a: CrossoverStep 4a: Crossover

• Create new genomes by randomly swapping
their genomes at a random point

• Example: Use the two genomes we selected in
the previous slide and swap at location 6

Offspring

1000000111

Parent 1

1000001010

Parent 2

1110100111

100000

111010

1010

0111

1110101010



Step 4b: MutationStep 4b: Mutation

• Inject more variation into the population by
randomly flipping a bit with a certain low
probability

• Example: Flip bits at random in the offspring
we generated

1110100111
1000100111
1110101010
1000000111

Population

1100100111
1000100111

1001000111
1110111010



Step 5: GOTO 2Step 5: GOTO 2

• We now have a the next generation, a new
population we treat just like the previous one

• Example: We count the ones again.  On
average, they have slightly higher fitness.

1100100111
1000100111
1110101110
1001000111

Population

6
5

5

Fitness

7



A Note OnA Note On
Mutation & Crossover RatesMutation & Crossover Rates

• The goal is to strike a balance between
preserving existing information and
generating new information…
– Crossover preserves information
– Mutation generates information

• High mutation rate  aggressive, global exploration
of search space

• Low mutation rate  less aggressive, local
exploration of search space

• Static or dynamic ?
– Dynamic mutation rates adjust according to the

current progress of the search. Static ones do not.
– e.g. We may choose to raise the mutation rate if

our candidate solutions are not improving in fitness
after some set amount of time



Two Things We NeedTwo Things We Need……

A representation
– What input are we going to inject?

A fitness function
– How are we going to measure how good the

input is?



RepresentationRepresentation
• We need to inject input in a certain format

(e.g. valid packet format in a parsing
program)

• Our representation describes the steps used
to build the input string
– The benefit of evolving steps (as opposed to

evolving the strings themselves) is that we can
preserve some description of the dependency
between user input and program structure

– Enables us to potentially “learn” how to
approximate a valid input format without apriori
knowledge (applicable to parser code)

• We use a special kind of rule set called a
context-free grammar



Context Free GrammarsContext Free Grammars

• Consists of:
– Terminals - the characters in the language
– Nonterminals – place holders, much like

variables in algebra
– Production rules – substitutions you can

make for each nonterminal
– Initial rule – the first production rule,

where the whole thing beings



ExampleExample

S sAs | xBx | m

A bBb | B

B aAa | C | AB

C c | d | e

Initial Rule

Production rules

Terminals

Nonterminals



ExampleExample

S sAs | xBx | m

A bBb | B

B aAa | C | AB

C c | d | e

S xBx xaAax xabBbax xabCbax

xabdbax



More on RepresentationMore on Representation

• A grammar is a description of how to
build all the strings

• Our representation is a string of
integers

• How do we use the grammar to build a
string in the language?

• How do we turn 10247 into xabdbax?



Grammatical EvolutionGrammatical Evolution

• To produce a string from in our
grammar using a series of integers, we
use grammatical evolution, which can
be summarized in pseudocode:

while(nonterminals in the string) {
find first nonterminal;
numRules = number of production rules for first

nonterminal
i = (next integer in the genome)%numRules;
apply productionRule[i];

}



Grammatical EvolutionGrammatical Evolution

S sAs | xBx | m

A bBb | B

B aAa | C | AB

C c | d | e

S xBx xaAax xabBbax xabCbax

xabdbax

1 0 0 1

1

  0 1 2

1 0 2 4 7



Two Things We NeedTwo Things We Need……

 A representation
– Grammatical evolution

A fitness function
– How are we going to measure how good the

input is?



Fitness FunctionFitness Function

• We can observe the program’s dynamic
behavior and orient ourselves with the
static control flow graph

• We want inputs that maximize code
coverage
– In other words, inputs that cause previously

unobserved behavior
– In other other words, inputs that go places

on the control flow graph previous inputs
haven’t explored



Markov ProcessMarkov Process

• Statistical models are handy for
explaining what we mean by “rare” in a
quantifiable way

• A particular type of statistical model,
called a Markov process, is appropriate
here

• Rather than bore you with theory, I’ll
try to show you how they work



Markov Process ExampleMarkov Process Example

A

• During each generation of the genetic
algorithm, we keep a running total (or sample)
of the solutions that used each transition in
the control flow graph

B C

D E F

K

N

JIH

M

G

L

.25 .75

.9 .1

.5

.5

1

.67 .33 .6.4

1
1

1.2 .8



Markov Process ExampleMarkov Process Example

A

• To compute the fitness of a solution, we
simply calculate its probability assuming a
Markov process from the sampled results
(lower is better)

B C

D E F

K

N

JIH

M

G

L

.25 .75

.9 .1

.5

.5

1

.67 .33 .6.4

1
1

1.2 .8

Path = A, C, E, D, G, M

Fitness = .75 x .9 x .5 x .67
x .8 = .18



Two Things We NeedTwo Things We Need……

 A representation
– Grammatical evolution

 A fitness function
– Sampled Markov Process



Implementation:Implementation:
Extracting The Program CFGExtracting The Program CFG

• We extract subgraph of overall CFG that
includes all nodes existing on a path
between input acceptance node and
target nodes (potentially vulnerable
nodes containing things like strcpy calls)
– Use IDA’s plugin SDK to construct graph
– Nodes with edges directed outside subgraph

are placed within a “rejection set”.



IllustrationIllustration
Extracting The Program CFG (1)Extracting The Program CFG (1)

• Identify source (input) and a destination
(potentially vulnerable) nodes

recv

strcpy

source

destination



IllustrationIllustration
Extracting The Program CFG (2)Extracting The Program CFG (2)

• Identify all nodes on a path between source
and target nodes

Path Nodes
recv

strcpy

source

destination



IllustrationIllustration
Extracting The Program CFG (3)Extracting The Program CFG (3)

• Identify reject nodes
– i.e. the nodes that bound a known path to the target

but do not exist on a path themselves

Reject Nodes

Path Nodes
recv

strcpy

source

destination



Instrumenting the program CFGInstrumenting the program CFG

• We place breakpoints on the entry points for
all extracted subgraph nodes.
– They are used to evaluate progress on the runtime

execution path for a given input
– The execution path is tracked until a rejection node

is reached (i.e. the destination is no longer
reachable along all subsequent execution paths) OR
target node has been reached

– When the destination is determined to  be no longer
reachable, but we have not yet reached the target
nodes we stop and try the next input



IllustrationIllustration
BreakpointsBreakpoints

recv

strcpy

source

destination

recv

strcpy

source

destination

Reject Nodes

Path Nodes

Breakpoints



Evolving program inputEvolving program input

• Starting with an initial population
– Run each input through the program and

track execution path. If program crashes,
log it and restart.

– Calculate “fitness” of each input based
upon its path

– Choose the “fittest” individuals and mate
them to form the next population of inputs

– Run new inputs until target node has been
successfully reached.



DEMODEMO



AdvantagesAdvantages

• We apply knowledge gained from past
experience to drive our choice for future
inputs
– Well suited to applying to parser code, which has a

rich control flow structure for the GA to learn from

• Minimal knowledge of input structure
required
– GA can learn to approximate input format during

execution

• Once a target location has been reached, the
algorithm continues to exploit weakensses in
the CFG to produce additional, different
inputs capable of reaching it



LimitationsLimitations
• Difficulty to extract some parts of the CFG

statically
– Thread Creation
– Call tables

• Dependent upon CFG structure
– Program must have enough information embedded

within its structure for the GA to be able to “learn
from”

• Assumes dependency between graph structure and
user supplied input (an example would be parser code)

– Not useful for programs that have a ‘flat’ CFG
structure

– Finding all paths has high complexity O() and takes a
long time on large program graphs

– We can prove reachability by getting to a potentially
vulnerable target state, but failure to get there does
not mean the location is unreachable!



ConclusionsConclusions
• Shows how genetic algorithms can be applied

to the external input crafting process to
maximize exploration of program state space
and intelligently drive a program into
potential vulnerable states.

• Automated approach  treats the internal
structure of each node in the CFG as a black
box.

• Needs testing on more complex programs
– Our work is theoretical and prototypish

• Needs testing on more complex programs



To Summarize ;)To Summarize ;)



??


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



